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ABSTRACT. This article is concerned with second order nonlinear delay, and
especially ordinary, differential equations. By the use of the fixed point tech-
nique based on the classical Schauder's theorem, for any given line, sufficient
conditions are established in order that there exists at least one global solution
which is asymptotic at co to thisline. In thespecial case of ordinary differential
equations, via the Banach's Contraction Principle, for any given line, condi-
tions are presented which guarantee that there exists a unique global solution
that is asymptotic at co to this line. The application of the results obtained to
second order delay, and ordinary, differential equations of Emden-Fowler type
is presented, and some examples demonstrating the applicability of the results
are given. Finally, some supplementary results are obtained, which provide
sufficient conditions for all global solutions belonging to a suitable class to be
asymptotic at co to lines.

1. INTRODUCTION

In the asymptotic theory of delay, and especially of ordinary, differential equa-
tions, an interesting problem is that of the study of solutions with prescribed as-
ymptotic behavior. This problem has been the subject of many investigations; we
restrict ourselves to mention the recent papers [2], [5], [10—20] and [22—26] as well
as the older classical articles [8, 9] (for a more extensive bibliography, see [17,18]).
It is of special interest to investigate global solutions, i.e. solutions on the whole
given interval, with prescribed asymptotic behavior. On this problem there is an
extensive bibliography (see, for example, [2], [5], [8, 9], [11-16] and [22—26]; for
more references, see [15,17,18]). The present work deals with global solutions that
are asymptotic at co to lines for second order delay, and especially ordinary, differ-
ential equations. For the basic theory of delay differential equations, the reader is
referred to the books [3,4,6].

In [17], the authors considered n-th order {n > 1) nonlinear ordinary differential
equations and studied solutions that behave asymptotically like polynomials at co.
More precisely, for each given integer m with 1 < m < n — 1, sufficient conditions
have been presented in order that, for any real polynomial of degree at most m,
there exists a solution which is asymptotic at oo to this polynomial. Conditions
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have been alse given, which are sufficient for every solution to be asymptotic at oo
to a real polynomial of degree at most n — 1. The application of the results in [17]
to the special case of second order nonlinear ordinary differential equations leads
to improved versions of the ones contained in the recent paper by Lipovan [10] and
of other related results existing in the literature. Note that the nonlinear term, in
the differential equations considered in [17], depends only on the time ¢ and the
unknown function z.

In a subsequent paper [18], the first and the third author investigated solutions
approaching polynomials at co to the more general case of n-th order (n > 1)
nonlinear ordinary differential equations, in which the nonlinear term depends on
the time ¢ and on z,z’,...,z"), where z is the unknown function and N is an
integer with 0 < N < n — 1. The results obtained in [18] extend those in [17]
concerning the particular case where NV = (.

It must be noted that, in [17,18] (as well as in [10]), only nonlinear ordinary dif-
ferential equations are considered and that, in these recent works, solutions defined
for all large ¢, but not always global, are investigated.

In the present work, we deal with second order nonlinear delay differential equa-
tions, and especially ordinary differential equations, and we study global solutions
that are asymptotic at co to lines. More precisely, for any given line &t +1n (€ and
7 are real constants), we establish sufficient conditions for the existence of at least
one global solution x such that z(t) = £t +n+0(1) and 2'(t) = £ +0(1), for £ — co.
In the special case of second order nonlinear ordinary differential equations, for
any given line £t + i (with &, 7 € R), we also present conditions guaranteeing the
existence and uniqueness of a global solution z satisfying z(t) = £t +n -+ o(1) and
z'(t) = € + o(1), for t — oo. Moreover, we apply our results to the case of second
order delay, and especially ordinary, differential equations of Emden-Fowler type,
and we give some examples in order to demonstrate the applicability of the results.
Finally, we provide sufficient conditions for every global solution = that belongs to
a suitable class to satisfy x(t) = &t + 7+ o(1) and z'(t) = € + o(1), for t — oo,
where £ and 7 are real constants (depending on the solution ).

It is an open question whether the results of the present paper can be extended
to the more general case of n-th order (n > 1) nonlinear delay, and especially ordi-
nary, differential equations. For such differential equations, it is an open problem to
investigate the existence (and the uniqueness, in the special case of ordinary differ-
ential equations) of global solutions that are asymptotic at co to real polynomials
of degree at most m, where m is a given integer with 1 <m <n — 1.

Throughout the paper, for any interval [ of the real line R and any subset £ of
R, by C(I,§) we will denote the set of all continuous functions defined on I and
having values in 2. Moreover, r will be @ nonnegative real constant. Furthermore, if
t is a point in the interval [0, oc) and y is a continuous real-valued function defined
at least on [t — r,¢], the notation x; will be used for the function in C([-r,0],R)
defined by the formula

xe(t)=xE+7) for —r <7 <0.

We notice that the set C([—r,0],R) is a Banach space endowed with the usual
sup-norm ||-||:

¥l = max |¢(r)] for ¢ € C([-r,0,R).

-r<r<0
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Consider the second order nonlinear delay differential equation
(E) z"(t) + f(t, 24, 2'(t)) = 0,
where f is a continuous real-valued function defined on the set [0, 00)xC([—r, 0], R)x

R.

Consider also, in particular, the second order nonlinear delay differential equation
(Eo) z”'(t) + fo(t, z:) = 0,

where fo is a continuous real-valued function defined on the set [0, 00)xC([-r, 0], R).

We are interested in solutions of the delay differential equations (E) and (Eg) on
the whole interval [0, c0). By a solution on [0, 00) of (E) [respectively, of (Eo)], we
mean a function x in C([—r, c0), R) which is twice continuously differentiable on
the interval [0, c0) and satisfies (E) [resp., (Eq)] for all ¢ > 0.

Furthermore, let us concentrate on a particular class of delay differential equa-
tions. More precisely, let us consider the second order nonlinear delay differential
equation

(E") ' (t) + g(t, z(t — T1(2)), ..., z(t — T (2)), 2'(t)) = 0
and, in particular, the second order nonlinear delay differential equation
(Ep) z"(t) + go(t, x(t — T1(2)), ..., z(t — T (£))) = 0,

where m is a positive integer, g is a continuous real-valued function on [0,00) x
R™*1, gq is a continuous real-valued function on [0,00)xR™, and T; (j = 1, ...,m)
are nonnegalive continuous real-valued functions on the interval [0, oo) with

~max supTj(t) =r.
j=1,...,mt20

If the delay differential equation (E) or (Ep) is to be equivalent to (E’) or (Ej),
respectively, we must define
f(ta ¥, Z) = g(t, w(_Tl (t))7 e ¢(~Tm(t)), z)
for any (t,v,z) € [0,00) x C([-7,0],R) x R

or
fO(t’ 'U')) = gﬂ(ts w(_Tl (t))’ sy ¢(_Tm(t))) for any {t, 'w) € [0, OO) x C({—T’ OLR)-:
respectively.

We restrict our attention only to solutions of the delay differential equations (E')
and (Ej) on the whole interval [0,00). A solution on [0,00) of (E) [resp., of (Ej)
is a function x in C([—r, 00), R), which is twice continuously differentiable on the
interval [0, co) and satisfies (E') [resp., (Ef)] for all ¢ > 0.

Now, let us consider the special case of ordinary differential equations. That is,
consider the second order nonlinear ordinary differential equation

(D) () + h(t,z(t),2'(t) =0
and, especially, the second order nonlinear ordinary differential equation
(Do) () + ho(t, z(t)) = 0,

where h is a continuous real-valued function on [0,00) x R2, and hg is is a contin-
uous real-valued function on [0,00) x R.

We confine our discussion only to solutions of the differential equations (D) and
(Do) on the whole interval [0, co).
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The results of the paper are stated in Section 2, while their proofs are given
in Sections 3—5. Section 6 is devoted to the application of the results to second
order (delay or, especially, ordinary) differential equations of Emden-Fowler type
as well as to some examples demonstrating the applicability of our results. In
the last section (Section 7) some supplementary results are given, which can be
characterized as a complement of the results of the present work.

2. STATEMENT OF THE RESULTS

Our results in this paper are presented in the form of four theorems (Theorems
1—4) and four Corollaries (Corollaries 1—4). In Theorem 1 (respectively, Theorem
2), for given real constants £ and 7, sufficient conditions are established in order
that the delay differential equation (E) [resp., (Eo)] have at least one solution z on
the interval [0, o) such that z(t) = &t +n + o(1) and 2/(t) = € + o(1), for t — co.
Corollary 1 (resp., Corollary 2) is the application of Theorem 1 (resp., Theorem
2) to the particular case of the delay differential equation (E’) [resp., (Ej)], while
Corollary 3 (resp., Corollary 4) is the specialization of Theorem 1 (resp., Theorem
2) to the ordinary differential equation (D) [resp., (Dg)]. In Theorem 3 (resp.,
Theorem 4), for given real constants £ and 7, conditions are presented, which are
suffficient for the ordinary differential equation (D) [resp., (Dp)] to have exactly one
solution x on the interval [0, co) such that z(t) = &t +7n+o0(1) and z'(t) = € +o(1),
for £ — oo.

Theorem 1. Assume that
(2.1)  |f(t, 9, 2)| S F(t, Y], |2])  forall (t,4,2) € [0,00) x C([-7,0],R) x R,

where F' is a nonnegative real-valued function defined on [0, 00)xC ([—r, 0], [0, c0))x
[0, 00), which satisfies the Continuity Condition:

(C) F(t, [xt], IX'(t)]) is continuous with respect to t in [0,00) for each given
function x in C ([—r,00), R) which is continuously differentiable on the interval
[0, c0).

Suppose that:

(B) For each t > 0, the function F(t,-,-) is increasing on C ([—r,0],[0,00)) x
[0, c0) in the sense that F(t,,z) < F(t,w,v) for any ¥, w in C ([-r,0],[0,00))
with ¢ < w (ie. ¥(7) < w(7) for —r <7 <0) and any z, v in [0,00) with z < v.

Let £ and 7 be given real constants, and let there exist a real number ¢ with
e > max{|£|,n|} so that

(2.2) /OootF(t,%,c)dt = B i
and
(2.3) f F(t,m c)dt < c— ],

where the function v in C ([—r, 00), [0,00)) depends on ¢ and is defined by

¢ for —r<t<0
(2.4) At) =
elt+1) fort=0.
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Then the delay differential equation (E) has at least one solution x on the interval
[0, c0) such that

(2.5) zt) =& +n+o0(l) fort— oo

and

(2.6) z'(t) =&+ o(l) fort — oo;

in addition, this solution x satisfies

(2.7) z(t) =z(0) for —r<t<0,

(2.8) §e+n—(e—In)) Sz(t) <&t +n+(c—nl) for everyt >0
and

(2.9) E—(c— &) S2/(t) <E+(c—|¢]) for every t > 0.

Theorem 2. Assume that
(2.10) [fo(t,¥)| < Fo(t,|4]) for all (t,4) € [0,00) x C([-r,0],R),

where Fy is a nonnegative real-valued function defined on [0, 0o) x C ([—r, 0], [0, 00)),
which satisfies the Continuity Condition:

(Co) Folt, |xe]) is continuous with respect to t in [0,00) for each given function
x n C([-r, o), R).

Suppose that:

(Bo) For each t > 0, the function Fy(t,-) is increasing on C ([—7,0],[0,00)) in
the sense that Fy(t,v) < Fo(t,w) for any ¢, w in C([-r,0],[0,00)) with ¥ < w
(ive. 9(r) S w(r) for —r <7 <0),

Let & and 1 be given real constants, and let there exist a real number ¢ with
¢ > max{|¢|, [n|} so that

(2.11) Ac%wMﬁgumwmmm,

where the function <y in C ([—r, 00}, [0,00)) depends on ¢ and is defined by (2.4).
Then the delay differential equation (Eq) has at least one solution x on the interval
[0,00) such that (2.5) and (2.6) hold; in addition, this solution x satisfies (2.7)
and:

(212) &t +n—(c—max{l¢], In]}) < z(t) < & +n+ (¢ — max{|¢], [7]})
for every t >0

and

(2.13) £ — f Fo(s,vs)ds < z'(t) < ¢ —O—f Fy(s,vs)ds  for every t > 0.
0 0

(Note that, because of (2.11), [ Fo(s,vs)ds is finite.)

Corollary 1. Assume that
ig(t, Y1y eeiy Yms Z)‘ S G(t: ‘yl[ yreey |me 1 |Z|) fO'T' (ty Ylyeeey Ym, Z) & [Dv OO) X Rm+17

where G' is a nonnegative continuous real-valued function on [0,00) x [0, 00)™ 1,
Suppose that:
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(B") For each t > 0, the function G(t, -, ..., ") is increasing on [0, c0)™*! in the
sense that G(t, Y1, ...y Um, 2) < G(E, w1, ..., Wi, V) fOT any (Y1, -+, Yms 2), (W1, ooy Wi, V)
in [0,00)™ ! with y1 < w1, ey Y < Wi, 2 < 0.

Let & and 1 be given real constants, and let there exist a real number ¢ with
c > max{|¢|, |n|} so that

/DOO tG(t, p1(t), - Pt} C)dt < e~ |7
and -
/0 G(t,pl(t),-..,pm(t),(?)dtSC—Jf],

where, for each j € {1,...,m}, the function p; in C([0,00),[0,00)) depends on c
and s defined by

¢, if 0<t<Ty(t)
(2.14) pi(t) —{

e(t—Ty(t) + 1), of &= Tx(t)
Then the delay differential equation (E') has at least one solution = on the interval

[0,00) such that (2.5) and (2.6) hold; in addition, this solution z satisfies (2.7),
(2.8) and (2.9).

Corollary 2. Assume that

|90(t1'yl: "':ym)l S Go(t: Jyli 3 reey |ym.l) fﬂ?" (t:yla aym) & [O!OO) X R‘mv

where Go is a nonnegative continuous real-valued function on [0,00) x [0, 00)™.
Suppose that:

(By) For each t > 0, the function Go(t,-,...,-) is increasing on [0,00)™ in the
sense that Go(t, 1, ..., Ym) < Go(t, w1, ...,wm) for any (Y1, ..., Ym)s (W1, ..., Wyy) in
[0, 00)™ with y1 < w1, ..., Y < Wpy.

Let § and n be given real constants, and let there exist a real number ¢ with
¢ > max{|¢|,|n|} so that

(2.15) [Om tGo(t, p1(t), s pm(t))dt < ¢ — max{[¢] , |n]},

where, for each j € {1,...,m}, the function p; in C([0,c0),[0,00)) depends on ¢
and is defined by (2.14). Then the delay differential equation (E)) has at least one
solution x on the interval [0,c0) such that (2.5) and (2.6) hold; in addition, this
solution z satisfies (2.7), (2.12), and

3 ﬁf Go(s, p1(s), -y pm(s))ds < 2'(t) < E+/ Go(s, p1(s), ..., pm(s))ds
0 0
for every t = 0.
(Note that, because of (2.15), [~ Go(s, p1(8), ..., pm(s))ds is finite.)

Corollary 3. Assume that
(2.16) (ty, 2)| < H(E Jyl, |2])  for all (t,y,2) € [0,00) x R?,
where H is a nonnegative continuous real-valued function on [0, c0) X [0, 00)2. Sup-
pose that:

(A) For each t > 0, the function H(t,-, ) is increasing on [0,00)? in the sense
that H(t,y,2) < H(t,w,v) for any (y, z), (w,v) in [0,00)? with y < w, z < v.
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Let € and 7 be given real constants, and let there exist a real number ¢ with
c > max{|é|,|n|} so that

(2.17) f@o tH(t,c(t+1),c)dt < c—|n
0

and

(2.18) /w H(t, ot + 1), 0)dt < c— |
0

Then the ordinary differential equation (D) has at least one solution = on the in-
terval [0,00) such that (2.5) and (2.6) hold; in addition, this solution x satisfies
(2.8) and (2.9).

Corollary 4. Assume that

(2.19) Ihot, )] < Ho(t,lyl) for all (£,3) € [0,00) X R,

where Hy is a nonnegative continuous real-valued function on [0, 00) % [0, 00). Sup-
pose that:

(Ag) For each t > 0, the function Ho(t,-) is increasing on [0,00) in the sense
that Ho(t,y) < Ho(t,w) for any y, w in [0, 00) with y < w.

Let £ and n be given real constants, and let there exist a real number ¢ with
e > max{|¢|,|n|} so that

(2.20) /DOU tHo(t,c(t + 1))dt < ¢ — max{|¢], |n|}.

Then the ordinary differential equation (Do) has at least one solution = on the
interval [0,00) such that (2.5) and (2.6) hold; in addition, this solution x satisfies
(2.12) and

(2.21) £- foo Hols, os +1))ds < 2'(£) < £ + foo Hilayela+ 1))ds
i ’ for every t > 0.
(Note that, because of (2.20), [;° Ho(s,c(s + 1))ds is finite.)
Theorem 3. Let the following generalized Lipschitz condition be satisfied:
(2.22)  |h(t,y, 2) — h(t,w,v)| £ L(t) max{|y — w|, |z — v|}
for all (t,y,2), (t,w,v)in [0,00) x R?,

where L is a nonnegative continuous real-valued function on the interval [0, c0)
such that

(2.23) max{/omt(t+1)L(t)dt, /Doo(t+1)L(t)dt} <1

Moreover, assume that (2.16) holds, where H is a nonnegative continuous real-
valued function on [0,00) X [0,00)?. Suppose that (A) is satisfied.

Let £ and n be given real constants, and let there erist a real number c with
¢ > max{[{|,|n|} so that (2.17) and (2.18) hold. Then the ordinary differential
equation (D) has exactly one solution x on the interval [0, c0) with

(2.24) |z(0)] < ¢
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and
(2.25) |z'(t)] < e for every t >0,

such that (2.5) and (2.6) hold; in addition, this unique solution z satisfies (2.8)
and (2.9).

Theorem 4. Let the following generalized Lipschitz condition be satisfied:
(2.26)  |ho(t,y) — ho(t,w)| < Lo(t) |y —w| for all (t,y), (t,w)in [0,00) x R,

where Lo is a nonnegative continuous real-valued function on the interval [0, c0)
such that

(2.27) fomt(t + 1) Lo(t)dt < 1.

Moreover, assume that (2.19) holds, where Hy is a nonnegative continuous real-
valued function on [0,00) x [0, 00). Suppose that (Ag) is satisfied.

Let £ and n be given real constants, and let there exist a real number ¢ with
c > max{|¢], |n|} so that (2.20) holds. Then the ordinary differential equation (Do)
has exactly one solution = on the interval [0, c0) with

(2.28) lz(t)] <e(t+1) for every t >0,

and such that (2.5) and (2.6) hold; in addition, this unique solution x satisfies
(2.12) and (2.21).
Note: Inequalities (2.24) and (2.25) imply (2.28).

An important remark. (i) In the conclusions of Theorems 1 and 3 and of
Corollaries 1 and 3, the solution z satisfies (2.8) and (2.9).
Assume that € > 0 and 17 > 0. Then (2.8) and (2.9) are written as

(2.8") Et—(c—2n) <z(t) <& +c foreveryt >0
and
(2.9 —(c—2¢) <z'(t) <c foreveryt >0,

respectively. Furthermore, in addition to the hypothesis ¢ > € and ¢ > 0, let us
suppose that ¢ < 2€ and ¢ < 2. We have thus 0 <€ <c<2fand 0 <np<c< 2.
Then (2.8") guarantees that the solution x is positive on the interval (0,00) and
such that tlirxoaom(t) = co . Also, from (2.9") it follows that z'(t) > 0 for ¢t > 0 and
so z is strictly increasing on the interval [0, co).

Analogously, in the case where 26 < —¢c < £ < 0 and 2n < —c < 7 < 0,
we can see that the solution x is negative on the interval (0,00) and such that
113&:1:@) = —oo, and that z is strictly decreasing on [0, co).

(ii) The solution z in the conclusion of Theorem 2 is such that (2.12) and (2.13)
are satisfled. (Analogous inequalities are fulfilled for the solution x in the conclu-

sions of Corollaries 2 and 4, and of Theorem 4).
Let £ and n be positive. Then (2.12) becomes

(2.12") &t —[c— (n+max{{,n})] < z(t) < & + [c— (—n + max{¢, n})]
for every t > 0.

We have assumed that ¢ > £ and ¢ > 7. In addition to this assumption, let
us suppose that £ > fooo Fo(s,¥s)ds and ¢ < n+ max{€,n}. So, we have 0 <
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fooo Fo(s,v)ds <& <cand 0 <n < ¢ <n+max{é,n}. It follows from (2:124)
that the solution x is positive on the interval (0,00) and satisfies ihlim %) = &5
—00

Moreover, (2.13) ensures that z'(t) > 0 for ¢ > 0 and consequently z is strictly
increasing on the interval [0, 00).

In a similar way, we can conclude that, if —c < & < — f[;x’ Fo(s,vs)ds < 0 and
n+max{&,n} < —c <7 <0, then the solution = is negative on the interval (0, o)
with tl_iﬁjm(t) = —cc, and strictly decreasing on [0, 00).

Before closing this section, we must point out the connection between Theorem
1 and Theorem 2. It is obvious that Theorem 1 concerning the delay differential
equation (E) is also applicable to the particular case of the delay differential equation
(Eo). It is remarkable that the result obtained by such an application is different
from Theorem 2 dealing with the delay differential equation (Ep). As it is evident,
the conclusion of Theorem 2 cannot be derived from the conclusion of Theorem 1.
What is more, the spaces on which Schauder’s theorem is applied in the proofs of
these two theorems are different one another. Therefore, the proofs themselves are
significantly different. Example 7 at the end of Section 6 illustrates the difference
between the conlcusion deduced by Theorem 1 and the conlcusion deduced by
Theorem 2.

Analogous remarks can be made for the connection between Corollary 1 and
Corollary 2, between Corollary 3 and Corollary 4, and between Theorem 3 and
Theorem 4.

3. PROOF OF THEOREM 1

The proof of Theorem 1 is based on the use of the following Schauder’s fixed
point theorem (see Schauder [21]).

The Schauder theorem. Let S be a Banach space and X any nonempty
convez and closed subset of S. If M is a continuous mapping of X into itself and
MX s relatively compact, then the mapping M has at least one fized point (i.e.
there exists an © € X with = Mz).

Let BC([0,00),R) be the Banach space of all bounded continuous real-valued
functions on the interval [0, co), endowed with the sup-norm ||-|| defined by

lu|| = Eli}g lu(t)] for u € BC([0,00),R).

We need the following compactness criterion for subsets of BC([0, 0o), R), which is
a consequence of the well-known Arzela-Ascoli theorem. This compactness criterion
is an adaptation of a lemma due to Avramescu [1].

Compactness criterion. Let U be an egquicontinuous and uniformly bounded
subset of the Banach space BC([0,00),R). If U is equiconvergent at co, it is also
relatively compact.

Note that a set U of real-valued functions defined on the interval [0, co) is called
equiconvergent at oo if all functions in U are convergent in R at the point co and,
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in addition, for each € > 0, there exists T' = T'(¢) > 0 such that, for all functions u
in U, it holds {u(t) — lim u(s)l < € for every t > T.
§—00

Throughout the ramainder of this section, by S we will denote the set of all func-
tions in C([—r, o0), R), which have bounded continuous derivatives on the interval
[0, 00). The set S is a Banach space endowed with the norm J - } defined as follows

K ul= max{ max |u(t)|, sup [u'(t)f} forue S.
—r<t<0 t>0
To prove Theorem 1, we first establish the following proposition.

Proposition 1. Assume that (2.1) holds, where I is a nonnegative real-valued
function defined on [0, 00)xC ([, 0], [0,00))x [0, 00), which satisfies the Continuity
Condition (C). Suppose that (B) is satisfied.

Let £ and 1 be given real constants, and let ¢ be a positive real number such that

(3.1) fm £y, clde2 oo,
0
where the function v in C ([—r,00),[0,00)) depends on ¢ and is defined by (2.4).
Let also X be the subset of S defined by
(3.2) X={ze€8: fzl<e}
Then the formula
n—J5 sf(s,xs,2'(s))ds for —r <t<0

(3.3) (Mz)(t) = {
Et+n— [°(s—t)f(s,z5,2'(s))ds fort >0

makes sense for any function z in X, and this formula defines a continuous map-
ping M of X into S such that MX is relatively compact.

Proof of Proposition 1. Let x be an arbitrary function in X. From the definition
of X, via (3.2), it follows that

(3.4) lz(t)] <c for —r<t<0
and
(3.5) |2’ ()] < ¢ for every t > 0.

Inequality (3.4) gives, in particular, |z(0)| < ¢. So, by using this fact and (3.5), we
obtain for t > 0

lz(t)| =
i.e. we have
(3.6) |z(t)] < e(t+1) for every t > 0.
In view of (2.4), from (3.4) and (3.6) we conclude that
lz(t)| < y(t) fort>—r

m{0)+/0 z'(s)ds

t
< |:c(0)|+f 12/()] ds < o+ et,
0

and consequently
(3.7) |z¢| <y for all ¢ > 0.
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By taking into account (3.7) and (3.5) and using the assumption (B), we get
P, |ze], |2/ (0)|) < F(t,y,¢) fort=>0.
On the other hand, because of (2.1), it holds
|F(t, ze, ' (£))] < F(t, |ze|, |2 (1)]) for ¢ > 0.
Thus, we find

(3.8) |f(t,ze, 2'(t))| < F(t,v2,¢) for every t > 0.
Furthermore, by combining (3.1) and (3.8), we have

(3.9) fomﬂf(t,:ct,:c’(t))i dt <66,

This, in particular, implies

(3.10) /000 |f(t, 2o, 2'(2))] dt < o0,

So, in view of (3.9) and (3.10), it is true that

(3.11) /000 tf(t,z¢,z'(t))dt and /ODO f(t,zy,2'(£))dt  exist in R.

As (3.11) holds true for all functions = in X, we can immediately see that the
formula (3.3) makes sense for any function z in X, and this formula defines a
mapping M of X into C([—r,0),R). We will show that M is a mapping of X
into S, i.e. that MX C 5. To this end, let us consider an arbitrary function z in
X. Then, by taking into account (3.8), from (3.3) we obtain for ¢t > 0

|(Mz)'(t)] = €+ft f(s, 25,2 (5))ds S\ﬁH/ﬁ |f(5,25,2'(5))| ds
F 1 18 d S DOF 1y 18 d *

< fil+ [ Flemads<lel+ [ Fls0ds
Therefore,
(3.12) [(Mz)' (t)| <@ forallt>0,
where
(3.13) Q= |£|+/ F(s,7vs,c)ds.

0

Note that (3.1) guarantees, in particular, that

oo
(3.14) f F(t, v, e)dt < oo
0

and so @Q is a nonnegative real constant. Inequality (3.12) means that (Mz)" is
always bounded on the interval [0, 00), and consequently Mz belongs to S. We
have thus proved that, for any function z in X, Mz € S, i.e. that MX C S.

Now, we shall prove that M X is relatively compact. From (3.3) it follows that,
for each x € X, the function Mz is constant on the interval [—r, 0]. By taking into
account this fact as well as the definition of the norm }f - }f, we can easily conclude
that it suffices to prove that the set

U ={((Mz)|[0,00))': ze X}
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is relatively compact in the Banach space BC([0,00),R). Each function z in X
satisfies (3.12), where the nonnegative real number @ is defined by (3.13) (and it
is independent of x). This ensures that U is uniformly bounded. Furthermore, for
any function z in X, it follows from (3.3) that

/ o (3)ds| < | "\ f (s, 20, 2'(s)) s

for all t > 0, and consequently, by taking into account (3.8), we derive

|(Mz)'(

(3.15) [(Mz)'(t) — €| < /Loo F(s,vs,c)ds for every t > 0.

For any function z in X, (3.15) together with (3.14) imply that
tlim (Mz)(t) =

By using again (3.14) and (3.15), we immediately see that U is equiconvergent at
oo, Now, by (3.8), for any function z in X and every ¢, t; with 0 < ¢; < ¢, from
(3.3) we obtain

(M) (t1) — (Mz)'(t2)]
Hf+/:o f(s J:s,s':’(s))ds] — [,5+ :3 f(s,zs,ml(s))ds]

ta

Fls, 2., 2(8))ds

t

3]
= F(s,vs,c)ds.

t1
Thus, by virtue of (3.14), it is easy to verify that U is equicontinuous. By the given
compactness criterion, the set U is relatively compact in BC([0,c0),R). Hence,

the relative compactness of M X (in S) has been established.

Next, we will show that the mapping M is continuous. For this purpose, let us
consider an arbitrary function z in X and a sequence (a:["i)u>1 of functions in X

with

Il

Il

s/2|f(s z4,2/(s))] ds

t1

ki —limzM = 2.

v—00

It is not difficult to verify that

lim z(t) = 2(t) uniformly in ¢ € [—7, 00)
and
lim (z™)/(t) = 2'(t) uniformly in ¢ € [0, c0).

V—0Q

On the other hand, by (3.8), it holds
|f(t,:1:i"], (m[“])’(t))| < F(t,w,¢) foreveryt>0 and forallv>1.

Thus, because of (3.1) and (3.14), one can apply the Lebesgue dominated conver-
gence theorem to obtain, for ¢ > 0,

tim [ (s —)f(s, 21, (1) (s))ds = / " — 7 e (s

v—00 t

So, from (3.3) it follows that
lim (Mz¥)(t) = (Mz)(t) fort> —r.
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It remains to establish that this pointwise convergence is also Jf - }f —convergence,
i.e. that

(3.16) Kok = lim Mz = Mz,

To this end, we consider an arbitrary subsequence (Mzll) _ of (M M) o

Since the set M X is relatively compact, there exist a subsequence (I\/."m[“'*“])y>1 of

(M'zf“"])u and a function « in S so that

>1
KW= lim Mzl =g

Y00

As the }f - } —convergence implies the pointwise convergence to the same limit
function, we must have uw = Mz. That is, (3.16) holds true. Consequently, M is
continuous.

The proof of the proposition has been completed.

Now, we proceed to the proof of Theorem 1.

Proof of Theorem 1. Let X be defined by (3.2). Clearly, X is a nonempty
conver and closed subset of S. Assumption (2.2) guarantees, in particular, that
(3.1) holds. So, by Proposition 1, the formula (3.3) makes sense for any function
z in X, and this formula defines a continuous mapping M of X into S such that
MX 1is relatively compact. We shall prove that M is a mapping of X into itself,
i.e. that MX C X. Let us consider an arbitrary function z in X. Then, by taking
into account (3.8), from (3.3) we obtain, for —r <t < 0,

(Mz)(E) =] = \—- /Ome(S,ws,m’(S))dS < /Omsf(s,rs,a:’(s))lds

< / sF(s,vs,c)ds
0

and consequently, in view of (2.2), we find
(3:17) [(Mz)(t) —n| <c—|n| for —r <t <0,
Moreover, by using again (3.8}, from (3.3) we derive for t > 0

|(Mz)'(t) - ¢ = /tmf(sams,m’(S))dS S/fm |f (s, 25, 2(s))| ds

oo o0
< / F(s, 'ys,c)dsgf F(s,vs,c)ds
t 0

and so, by (2.3), we get
(3.18) |(Mz)'(t) — €| <c— ¢ forevery t > 0.
Inequalities (3.17) and (3.18) give

[((Mz)(t)| <c for —r <t <0

and
[(Mz)(t)] <e forevery t >0,
respectively. From the last two inequalities it follows that J} Mz ¥< ¢, which means

that Mz belongs to X. We have thus proved that Mz € X for each z € X, i.e.
that MX C X.
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Now, we apply the Schauder theorem to conclude that there exists at least one
zin X with z = Mz, i.e.
n—Jfo sf(s,zs,z'(s))ds for —r <t <0
(3.19) z(t) =
Et+n— [ (s —t)f(s,2s,2'(s))ds fort>0.
From (3.19) we immediately obtain
z'(t) = —f(t,x¢,2'(t)) forallt>0

and so z is a solution on [0, co) of the delay differential equation (E). As z belongs
to X, (3.11) holds true and consequently

oo

lim (s —t)f(s,zs,2'(8))ds =0 = tﬁm /oo Fla,denz'(8))ds,
—oo [,

t—o0 [,
By using this fact, from (3.19) we can easily conclude that the solution z is such
that (2.5) and (2.6) hold. Furthermore, (2.7) is an immediate consequence of (3.19).
Moreover, by taking into account (3.8), from (3.19) we obtain for ¢ > 0

() - (€t +m)| = |- ftm(s—t)f(ws,:c’(S))dS < /f(s—ﬂf(s,zs,a:'(s))ds

IA

oo oo
f (8 —t)F(s,7s,0)ds < / sF(s,vs,c)ds.
t 0

Thus, in view of (2.2), we have

(3.20) |z(t) — (&t +n)| <c—|n| for every t > 0.
Also, since x = Mz, it follows from (3.18) that
(3.21) |z'(t) — €] < c—|¢| for every t > 0.

Finally, we see that (3.20) and (3.21) coincide with (2.8) and (2.9), respectively.
The proof of the theorem is complete.

4. PROOF OF THEOREM 2

The proof of Theorem 2 is also based on the use of the Schauder’s theorem
stated in the previous section. The compactness criterion for subsets of the Banach
space BC([0, 00), R), which is given in Section 3, will also be needed in the present
section.

In this section, So stands for the set of all functions u in C([-r,c0), R) with
u(t) = O(t) for t — oo. The set Sy is a Banach space endowed with the norm §f - Jro
defined by the formula

K ulfo= max{ ”é"’}’éom(t)' ; SUPM} for u € 5.
g St

>0t +1
The following proposition will be used in order to prove Theorem 2.
Proposition 2. Assume that (2.10) holds, where Fy is a nonnegative real-

valued function defined on [0, 00) x C'([—r, 0], [0, 00)), which satisfies the Continuity
Condition (Cqy). Suppose that (Bg) is salisfied.
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Let £ and n be given real constants, and let ¢ be a positive real number such that

o0
(4.1) f £Fo (£, 1.)dt < oo,
0

where the function v in C([-r,00),[0,00)) depends on ¢ and is defined by (2.4).
Let also Xo be the subset of Sy defined by

(4.2) Xo={zeSy: fzh<c}.
Then the formula

n—Jy sfo(s,zs)ds for —r <t <0
(4.3) (Moz)(t) =
Et+n— [T (s—t)fols,zs)ds fort>0

makes sense for any function z in Xo, and this formula defines a continuous map-
ping My of Xo into Sy such that MyXq is relatively compact.

Proof of Proposition 2. Consider an arbitrary function z in X,. By taking into
account the definition, by (4.2), of the set Xy, we immediately see that = satisfies
(3.4) and (3.6). These two inequalities together with (2.4) imply |z(t)| < (t) for
t > —r. Consequently, (3.7) holds true. By using (3.7) and the assumption (Bg),
we find

Fo(t,|z]) < Fo(t,y) fort=0.
But, in view of (2.10), it holds

|folt,ze)| < Fo(t, xe|) for ¢ > 0.
Hence, we have
(4.4) |fo(t,zt)| < Folt,v:) for every t > 0.

From (4.1) and (4.4) it follows that

(4.5) jo ™ 1oty s) dt oo,

which ensures, in particular, that

(4.6) /:O |folt, zy)| dt < 0.

Inequalities (4.5) and (4.6) guarantee that

o0 oo
(4.7) f tfo(t, z¢)dt and f Jo(t,z:)dt  exist in R.
0 0

Since (4.7) holds true for every function z in Xy, we can immediately conclude
that the formula (4.3) makes sense for any function = in Xo, and this formula
defines a mapping My of Xg into C([—r, c0), R). Furthermore, we shall prove that
My is a mapping of Xp into Sp, i.e. that MpXp C Sp. For this purpose, let us
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consider an arbitrary function z in Xy. Then, by taking into account (4.4), from
(4.3) we derive for ¢ > 0

K%T¥ﬂ!=: ?jf_tillw“_ﬂhwﬁﬂﬁ

< By [0l zlas
< max{lgl ik + [ (s~ 1) fo(o, o)l d
< max{lg, o} + [ (o = OFa(s, v)ds
< max{lel.fnl} + [ sFa(s s

So, if we set

(48) Qo = max{lel, nl} + [ sFa(si)ds,

then we have

(4.9) Jﬁ%f¥ﬂngo for all t > 0.

We note that, because of (4.1), Qo is a nonnegative real constant. It follows from
(4.9) that Moz belongs to Sp. Thus, it has been established that Moz € Sy for
every function z € Xj, i.e. that MyXy C 9.

Now, we will show that My X is relatively compact. We observe that, for any
function x in Xg, it follows from (4.3) that

(Moz)(s)
s+1 s=0

By taking into account this fact as well as the definition of the norm J - Jfo, we can
easily see that it is enough to show that the set

(Moz)(t) = (Mpz)(0) = for —r <t <0.

(Moz)(t)
t+1

Is relatively compact in the Banach space BC([0, o), R). Every function z in X,
is such that (4.9) holds, where the nonnegative real constant Qo is defined by (4.8)
(and it is independent of z). Thus, the set Up is uniformly bounded. Furthermore,
let  be an arbitrary function in Xo. Then, from (4.3) we obtain for ¢ > 0

b= {u : There exists z € X such that u(t) = fort > 0}

(Mozx)(t) . §t+n—ft°°(sft)fg(s,:cs)ds ¢
t+1 a t+1
_ == 7 (s = t)fo(s, 2,)ds]
B t+1
- |—€+7l+ [7(s —t) | fols,zs)| ds
B t+1 ’
Hence, in view of (4.4), it holds
(410) ’(MOI)(t) _ ‘ < I_E+7ﬂ+fg (S_t)FO(S;75)dS fOI‘t?_O.

t+1 - t+1
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It follows, in particular, from (4.1) that

o0
(4.11) f Fo(t, v )dt < 0.
a
We get
—E£4nl+ [(s—t)Fp(s,v,)ds . 20 !
Jim! £+l fzt(il VEo(s, vs)ds Jim [|—§+n!+/ (s—t)FD(s,%)ds]
o0 —00 t

= Jin |- [ Falorras]
and, consequently, by virtue of (4.11), we find

=€+ nl+ [ (s = t)Fo(s, vs)ds
m

(4.12) li =0,
t—00 t41
Inequality (4.10) together with (4.12) implies
M,
gy SO,
t—oo t+4+1

By using again (4.10) and (4.12), we can easily conclude that Uy is equiconvergent
at co. Now, let again x be an arbitrary function in Xo. From (4.3) we derive for
every t > 0

‘ [——(ﬂff)l(t)] l B (t+1 vz It +1)(Moz)'(£) — (Moz)(0)

|(t + 1) (Moz)'(t) — (Moz)(2)]
= ‘(ﬁ+1) [§+/t fo{s,xg)ds]

IA

~Jern- [T -0z

= ’&—7‘,f+/1 fg(s,:cs)der/too sfo(s,zs)ds

IA

|E-?7i+/; |fo(s,x5)|ds+ft s|fols,zs)| ds

IA

co o
e=nl+ [ lols.zllds+ [ slfals, ) ds.
0 0
So, because of (4.4), we have

]

(4.13) e

<O foreveryt >0,

where - -
O=lc=nl+ [ Folsnds+ [ sFuls)ds
0 0

In view of (4.1) and (4.11), © is a nonnegative real number. By taking into account
(4.13) and applying the mean value theorem, we find

'(Mox)(fl) _ (Moz)(t2)
t1+1 to+1

<Oty —ts] forevery ty >0, t2 > 0.
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Since the last inequality is fulfilled for all functions z in Xy (and © is independent
of z), we immediately see that Up is equicontinuous. By the given compactness
criterion, Up is relatively compact in BC ([0, o0}, R). So, the relative compactness
of MpXp has been proved.

Next, we shall prove that the mapping My is continuous. Let z be an arbitrary
function in X and (:1:[”])11>1 be any sequence of functions in Xy with

K to —,,ILHS‘OZ[V] =i,
It is not difficult to verify that
-l — Ulingozgy] =uz; foreveryt>0.
Moreover, (4.4) guarantees that
ffo(t,zgv])| < Fy(t,v;) foreveryt>0 and forall v >1.

5o, by taking into account (4.1) and (4.11), we can apply the Lebesgue dominated
convergence theorem to obtain, for ¢ > 0,

lim /W(s—t)fo(s,xgvl)ds=fm(s—t}fo(s,xs)ds.

V—0o0

Thus, from (4.3) it follows that
lim (Moz)(t) = (Mpz)(t) fort > —r.

Y00
Since Mo Xy is relatively compact and the }f - Jfo —convergence implies the pointwise
convergence to the same limit function, we can follow the same procedure as in
the proof of Proposition 1 to conclude that the above convergence is also } - Jfo
—convergence, i.e. to conclude that

K Ko — lim Moz = Myz.
V—0o0

This shows that My is continuous.
The proof of the proposition is now complete.

Now, we proceed to the proof of Theorem 2.

Proof of Theorem 2. Consider the set Xy defined by (4.2). It is clear that
Xo is o nonemply conver and closed subset of Sy. It follows, in particular, from
the hypothesis (2.11) that (4.1) holds. Hence, Proposition 2 guarantees that the
formula (4.3) makes sense for any function z in X, and this formula defines a
continuous mapping My of Xy into Sy such that MyX, is relatively compact. We
will show that My is a mapping of Xg into itself, i.e. that MyXy C Xy. For this
purpose, let us consider an arbitrary function z in Xy. Then (4.9) is satisfied, where
the nonnegative real number Qg is defined by (4.8). Assumption (2.11) ensures that
Qo < ¢ So, (4.9) gives

|(Moz)(¢)]
t4+1

In particular, (4.14) guarantees that |(Mpz)(0)| < c. But, from (4.3) it follows that

Moy is constant on the interval [—r, 0]. So, we always have

(4.15) [(Moz)(t)] <e for —r <t <0.

(4.14) <c¢ forevery t >0.
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Inequalities (4.14) and (4.15) give }f Moz o< ¢, which means that Myz belongs to
Xp. So, we have proved that Mpyz € Xy for every function = in Xy, which ensures
that MOXD Q X().
Now, by applying the Schauder theorem, we conclude that there exists at least

one z in Xg with £ = Mpz, i.e.

n— [y sfo(s,zs)ds for —r <t <0
(4.16) z(t)=

E+n— [7(s—t)fols,zs)ds fort > 0.
We immediately obtain

z'(t) = —fo(t,z) fort >0

and consequently x is a solution on [0, co) of the delay differential equation (Ep).
Since x € Xp, (4.7) is true and so
o0
lim (s —t)fols,zs)ds =0 = hm / Jols,zs5)d

t—o00 t

By taking into account this fact, we can use (4.16) to see that the solution x is such
that (2.5) and (2.6) hold. Next, we observe that (2.7) is an immediate consequence
of (4.16). Furthermore, by taking into account (4.4), from (4.16) we get for t > 0

j2(t) — (et +7)| = {— ftm(s—t)fo(&rs)ds </ " (o = 1) lfole, 7)) d

IA

o0 o0
/ (s — €)Fi(3, s )ds < / oo, )
t 0

So, because of (2.11), it holds
(4.17) lz(t) — (&t + )| < ¢ —max{|¢],|n|} for every t > 0.
Moreover, (4.16) gives, for t > 0,

/ fols,zs)ds

Therefore, by (4.4), we have

|z (t) -

_ft Jfo(s,zs)mssfo \fols, z2)] ds.

(4.18) lz'(t) — €| < / Fo(s,vs)ds for every t > 0.
0

Note that, because of (4.11), [;* Fo(s,vs)ds is finite. Finally, we see that (4.17)
and (4.18) coincide with (2.12) and (2.13), respectively.
The proof of the theorem is complete.

5. PROOFS OF THEOREMS 3 AND 4

In order to prove Theorems 3 and 4, we will make use of the well-known Banach’s
Contraction Principle (see, e.g., Kartsatos [7]).

The Banach Contraction Principle. Let P be a Banach space and Y any
nonempty closed subset of P. If N is a coniraction of Y into itself, then the
mapping N has exactly one fired point (i.e. there erists a unique y € Y with

y = Ny).
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The following lemma provides a useful integral representation of Problem (D),
(2.5), (2.6) (where £ and 7 are given real constants), which will be used in proving
Theorem 3.

Lemma 1. Let £ and 5 be given real constants. A real-valued function z, which
is continuously differentiable on the interval [0,00), is a solution on [0,00) of the
ordinary differential equation (D) such that (2.5) and (2.6) hold, if and only if it
satisfies

(5.1) z(t) =&t +n— /too(s —t)h(s,z(s),z'(8))ds fort>0.

A particular case of Lemma 1 is Lemma 2 below concerning Problem (Dy), (2.5),
(2.6); Lemma 2 will be used in the proof of Theorem 4.

Lemma 2. Let £ and 0 be given real constants. A function = in C([0,c0), R)
is a solution on [0,00) of the ordinary differential equation (Do) such that (2.5)
and (2.6) hold, if and only if it satisfies

(5.2) z(t) =Et+n— foo(s —t)ho(s,z(s))ds fort > 0.

Proof of Lemma 1. Let x be a real-valued function, which is continuously
differentiable on the interval [0, co).
Assume first that z satisfies (5.1). Then

lim [z(t) — (St +7n)] = —tlim /Oo(s —t)h(s, z(s), x’(s)')ds =0

t—oo

and so (2.5) holds true. Also, we immediately obtain
(s3]
& ()= f—i—/ h(s,z(s),z'(s))ds for every t > 0,
t
which gives
lim [z'(t) — £] = lim f h(s,z(s),z'(s))ds = 0,
t—oo t—oo t
i.e. (2.6) is fulfilled. Moreover, we have
z"(t) = —h(t,z(t),z'(t)) forallt>0,

which means that z is a solution on [0, 00) of (D).
Conversely, let us suppose that z is a solution on [0, 00) of (D) such that (2.5)
and (2.6) hold. Then from (D) it follows that

T
() —2'(t) = —f h(s,z(s),z'(s))ds forall T,t withT >¢ > 0.
t
Consequently,

lim z/(T) —z'(t) = _f h(s,z(s),z'(s))ds for every t > 0.
t

T—o00
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But, in view of (2.6), we have Tlim z'(T") = &. Thus,
—00

'(t) =&+ /00 h(s,z(s),z'(s))ds fort>0.
i
This gives
T peo
2(T) — 2(8) = £(T — t) +/t f h{oa(o), 2o))dods Tor T2 0,

which can equivalently be written as

f & oa
[2(T) — (6T + )] — [2(t) — (¢ +7)] = f f h(,2(c), 2'(0))dods
forT >t >0.

Hence,
Jim o) = €7+ )] - w(®) = @+l = [ [ hor2(0),a'(0))dods

_ / " (s — t)h(s, a(s), o'(s))ds for ¢ > 0.

But, because of (2.5), it holds T}im [z(T) — (€T + n)] = 0. Therefore,

—z(t) + (&t + 1) = /tm(s —t)h(s,z(s),z'(s))ds forallt >0,

i.e. x satisfies (5.1).
The proof of the lemma has been finished.

Now, we are in a position to present the proofs of Theorems 3 and 4.

Proof of Theorem 3. Let P be the set of all real-valued functions on the interval
[0, o), which have bounded continuous derivatives on [0, oo). This set is a Banach
space endowed with the norm ||-||* defined by

lul|* = max{]u(0}|, sup |u’(t)|} for u € P.
t>0

Let also Y be the nonempty closed subset of P defined by

¥ ={zel: lz" £}
Clearly, Y is the subset of P consisting of all functions z in P which satisfy (2.24)
and (2.25). _

Consider now an arbitrary function z in Y. Then z satisfies (2.24) and (2.25),
which imply (2.28). By using (2.25) and (2.28) as well as the hypothesis (A), we
obtain

H(t, |z(t)], |='(t)])) < H(t,e(t+1),¢) fort>0.
On the other hand, the assumption (2.16) guarantees that

Ih(t, 2(8), 5/ ()] < Ht, lo(@)], |5/ () for ¢ > 0.
Thus, we have
(5:3) |h(t, z(t), 2" (£))| < H(t,c(t +1),¢c) forallt > 0.
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Furthermore, we observe that the hypothesis (2.17) ensures, in particular, that
fDm tH(t,e(t +1),c)dt < oo

and consequently, by taking into account (5.3), we obtain
/'w tA(t, 2(t), /()| dt < oo.

So, '

(e o]

/ th(t,z(t), z'(t))d¢t and, in particular, / h(t,z(¢),2'(t))dt  exist in R.
0 0
This is true for all functions z in Y. Hence, the formula

(Nz)(t) =&t +n— /tm(s —t)h(s,z(s),2'(s))ds fort>0

makes sense for any function z in Y, and this formula defines a mapping N of YV’
into C([0,00),R). We will show that N is a mapping of Y into itself, i.e. that
NY C Y. To this end, let us consider an arbitrary function z in Y. Then, by
taking into account (5.3), we obtain

o) = |n- [ " sh(s,2(s), %' (s))ds

< ] £ ]0 ” (s, 2(s), 2'(s))] ds

< 77|+]0003H(3,c(s+1),c)d3

and consequently, in view of (2.17), it holds
(5.4) |(Nz)(0)] <.

Furthermore, by taking again into account (5.3), we derive for ¢ > 0

(NzY(t) —¢] = j [wh(s,z(s>,z'<s)>ds < ftm;h(s,z(s),zf(s)ws

< [ Hescls+1),0d5 < | Hscls-+ 1),

and so, because of (2.18), we have

(5.5) [(Nz)'(t) —&| <c—|¢| forallt>0.
It follows from (5.5) that
(5.6) [(Nz)'(t)] < ¢ for every t > 0.

Inequalities (5.4) and (5.6) mean that Nz belongs to Y. It has been verified that,
for each z € Y, Nz belongs to Y. Thus, we always have NY C Y.
Now, let © be an arbitrary function in P. Then

G) [u(0)] < [lul”
and
(5.8) ()] < |lull* for every ¢t > 0.

Furthermore, by using (5.7) and (5.8), we can immediately see that v is also such
that

(5.9) lu(®)] < [|lul|” (¢ +1) for every t > 0.
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Next, let us consider two arbitrary functions z and y in Y. Then, by using the
assumption (2.22) and taking into account (5.9) and (5.8), we obtain

|(Nz)(0) — (Ny)(0)] —/Om s [h(s, z(s), 2'(s)) — his,y(s),y/ (s))] ds

< [ s Ihs,m(6),2(6)) — hs, (e, (5)) ds
0
< f sL(s) max {|z(s) — y(s)|, |2'(s) — v/ (s)[} ds
< [ stlsymax {le = ol (s + 1), Jo — "} ds
0
= [/o sL(s)max {s + 1, l}dsJ lz -yl
That is,
(5.10)  |(N2)(0) = (Ny)(O)] < [ [ sts+ 1)L(s)ds] T

Furthermore, by using again (2.22) and taking again into account (5.9) and (5.8),
we get for ¢t > 0

[(Nz)'(t) = (Ny)' ()] =

/ "~ [, 2(2),2(5)) — h(s, u(s), ' (s))] ds
/ " Ih(e, 2(s), 2'(s)) — h(e, u(s), ¥ (a))] ds
/ " Ih(s2(s), 2'()) — ks, y(s) ¥/ () ds

[e.e]

IA IA

I A

A
e &

L(s) max {|z(s) — y(s)] . [&'(s) — v/ (s)]} ds

L(s)max { ||z —yll" (s + 1), = — yl|"} ds

[waL Jmax {s+1, 1}ds] lz —y|I*

|

/000 (s +1)L(s) ds] lz —ull™.

Thus, we find
B11) s VY0~ (V) @)] < | [ 6+ DL -l
Set

f = max {j:o s(s 4+ 1)L(s)ds, /Ooo(s + I)L(s)ds} .
Then (5.10) and (5.11) give
Nz — Ny||" < 8|z - y||".

This inequality holds true for all functions z and y in Y. On the other hand, from
the hypothesis (2.23) it follows that 0 < @ < 1. We have thus proved that the
mapping M :' Y — Y is a contraction.
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Finally, by using the Banach Contraction Principle, we conclude that there exists
exactly one function x in ¥ with £ = Nz. We see that = Nz is equivalent to the
fact that z satisfies (5.1). Hence, by Lemma 1, the ordinary differential equation
(D) has exactly one solution z on the interval [0, co) satisfying (2.24) and (2.25),
and such that (2.5) and (2.6) hold. It remains to establish that this unique solution
x satisfies (2.8) and (2.9). By taking into account (5.3), from (5.1) we obtain for
t>0

() — (&t + )

= 1~ [m(s — t)h(s,z(s),z'(s))ds| < /ﬂm(s —t) |h(s, z(s),z'(s))| ds

< /w(s—t)h’(s, e(s+1),c)ds < '/OO sH(s,c(s+1),c)ds.

So, by using (2.17), we immediately arrive at (3.20). Moreover, as z = Nz, it
follows from (5.5) that z satisfies (3.21). We see that (3.20) and (3.21) coincide
with (2.8) and (2.9), respectively.

The proof of the theorem is complete.

Proof of Theorem 4. Consider the set Py of all continuous real-valued functions
u on the interval [0, co) with u(t) = O(t) for t — co. The set Py is a Banach space
endowed with the norm ||-||5 defined by

Jully = sup &)
t>0t+1

Consider also the set ¥ defined by
Yo={z€P: |zlg<c}.

It is clear that Y} is the subset of Py consisting of all functions z in P, which satisfy
(2.28). The set Yy is a nonempty closed subset of Py.

Now, let z be an arbitrary function in ¥p. Then z satisfies (2.28). By taking
into account (2.28) and using the assumption (Ap), we get

Ho(t, |z(t)]) < Ho(t,e(t +1)) fort>0.
But, from the hypothesis (2.19) it follows that
lho(t, z(8))| < Ho(t, |z(t)]) fort>0.
By combining the last two inequalities, we obtain
(5.12) |ho(t, z(t))| < Ho(t,c(t+1)) forallt>0.

Next, we see that (2.20) implies, in particular,

for u € Fp.

[eo)
f tHo(t, c(t + 1))dt < oco.
0

Thus, because of (5.12), we have

/wtlho(t,a:(t))ldt < 0,

which guarantees that
oo o0
/ tho(t,z(t))dt and, in particular, / ho(t,z(t))dt  exist in R.
0 0
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So, as the function z in Y is arbitrary, we immediately see that the formula

(Noz)(t) = €t + 1 — ];m(s —t)ha(s,z(s))ds fort >0

makes sense for any function = in Yp, and this formula defines a mapping Ny of
Y, into C([0, c0), R). Furthermore, Ny is a mapping of Yy into itself, i.e. it holds
NoYp € Yp. Indeed, by using (5.12) and the hypothesis (2.20), for any function z
in Yy, we obtain, for every t > 0,

I |- o [ (o s (o
< B [T lho(s,z(on)ds
< max{lg I} + [ (s —t) s, ()l ds
< max{fel ful} + [ (s = )Hofs, cls + 1))ds
< max{lel, o) + [ sHols,cls + 1)ds
z

That is, for any = € Yy, Nox belongs to Yp. This proves our assertion.
Furthermore, let z and y be two arbitrary functions in ¥p. Then, by using the
hypothesis (2.26), we get for t > 0

‘(Nox)(?;iNoy)(tH _ ti : ) S “t [hO s, JS(S)) ho(S,y(S))] dis
< = 1ftm (s =) lho(s, 2(s)) — ho(s, y(s))] ds
< t+1/ (s — ) Lo(s) |e(s) — y(s)| ds
- [ (s =)o+ 1)Lofs )——-——lx(s);f(s)ids
[t -II- 7 / s—t)(s+ I)Lo(s)ds] il;g&i—?is—)l
Consequently,
[(Noz) () — (Noy)(2)] 1 lz(s) — y(s)|
tgg T < [t:-lgt-"_l (s —t)(s+ 1)L0(s)ds] s;gl[))—u—*s i
_ « |[z(s) — y(s)|
= [fo s(s+ l)Lo(s)ds] iglgs—-i-l—
That is,
(5.13) INoz — Noyllp < 6o llz — wll5,
where

o = /0‘00 s(s + 1) Lo(s)ds.
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Because of the assumption (2.27), we have 0 < 6 < 1. As (5.13) holds true for
all functions = and y in Yy, we conclude that the mapping Ny : Yo — Yy is a
contraction.

By the Banach Contraction Principle, there exists exactly one function z in ¥
with x = Ngz. Clearly, x = Nyz is equivalent to (5.2). So, from Lemma 2 it
follows that the ordinary differential equation (Dp) has exactly one solution z on
the interval [0, co) satisfying (2.28), and such that (2.5) and (2.6) hold. Finally, we
will show that this unique solution z satisfies also (2.12) and (2.21). By taking into
account (5.12), from (5.2) we obtain for ¢ > 0

2(t) — (&t +m)] = {— / " e~ Dhctm ey

</ " (s = ) |ho(s, a(s))] ds

IA

ftm(s —t)Ho(s,c(s + 1))ds < /00 sHo(s, (s +1))ds.

0

Thus, by using (2.20), we arrive at (4.17). Furthermore, it follows from (5.2) that,
fort >0,

/(£ — €] =

/tmho(s,x(s))ds < -/too [ho(s, z(s))| ds < /Ooo |ho(s, z(s))| ds

and consequently, in view of (5.12), we obtain

(5.14) |z (t) — €] < fo Hy(s,c(s +1))ds for every t > 0.

We notice that, because of (2.20), [;° Ho(s, c(s + 1))ds is finite. We immediately
observe that (4.17) and (5.14) coincide with (2.12) and (2.21), respectively.
So, the proof of the theorem has been completed.

6. APPLICATION TO DIFFERENTIAL EQUATIONS OF
EMDEN-FOWLER TYPE. EXAMPLES

Consider the second order nonlinear delay differential equations of Emden-Fowler
type

(6.1) 2" (t) + a(t) |z(t — r)|* sgnz(t — r) + b(t) |2’ (2)|° sgna’(t) = 0

and

(6.2) z"(t) + a(t) |z(t —r)|* sgnz(t —r) =0

as well as the second order nonlinear ordinary Emden-Fowler differential equations
(6.3) z(t) + a(t) |x(t)|” sgnz(t) + b(t) i:c’(t)[ﬁ sgnz'(t) =0

and

(6.4) z"(t) + a(t) |z(t)|* sgnz(t) = 0,

where a and b are continuous real-valued functions on the interval [0, 0), and o
and B are positive real numbers. Consider also the second order linear ordinary
differential equations

(6.5) z''(t) + a(t)z(t) + b(t)z'(t) =0
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and
(6.6) z'"(t) + a(t)z(t) = 0.

By applying Theorem 1 (or, especially, Corollary 1) and Theorem 2 (or, espe-
cially, Corollary 2) to the delay differential equations (6.1) and (6.2), respectivelly,
we are led to the following two results:

Result 1. Let £ and 1 be given real constants, and let there exist a real number
c with ¢ > max{|¢|,|n|} so that

6.7) [/Tt|a(t)|dt+/mt(t—r+l)°‘a(t)|dt] +cﬂfmt1b(t)|dzgc_m|
0 T 0

and

(6.8) ¢~ UO |a(t)|dt+/m(t—r+1)a Ia(t)!dt] +cﬁ/0m [b(t)| dt < c— ¢

Then the delay differential equation (6.1) has at least one solution = on the interval
[0,00) such that (2.5) and (2.6) hold; in addition, this solution x satisfies (2.7),
(2.8), and (2.9).

Result 2. Let £ and n be given real constants, and let there exist a real number
¢ with ¢ > max{|¢],|n|} so that

(6.9) c® [/Drt la(t)| dt + /00 t(t—r+ 1) |a(t) dt] < c—max{|¢], ||}

Then the delay differential equation (6.2) has at least one solution x on the interval
[0,00) such that (2.5) and (2.6) hold; in addition, this solution x satisfies (2.7),
(2.12), and

£—c” ['[OT la(s)| ds + /;oo(s —r+4+1)%|a(s)| ds} < wift)

<E4c” [f la(s)| ds +/ (s —r+1)*|a(s)| ds] for every ¢t = 0.
0 T
(Note that, because of (6.9), frw(s —r+1)%|a(s)| ds is finite.)

Also, an application of Theorem 1 (or, especially, of Corollary 3) and of Theorem
2 (or, especially, of Corollary 4) to the ordinary differential equations (6.3) and (6.4),
respectivelly, leads to the next two results:

Result 3. Let € and n be given real constants, and let there exist a real number
c with ¢ > max{|¢|, |n|} so that

(6.10) c"/mt(t+1)“|a(t)|dt +cﬁf°°tb(t)|dtgc—m;
0 0

and

(6.11) cﬂfo (t+1)°‘|a(t)[dt+cﬁfo b(t)|dt < c — |¢].

Then the ordinary differential equation (6.3) has at least one solution x on the
interval [0,00) such that (2.5) end (2.6) hold; in addition, this solution z satisfies
(2.8) and (2.9).
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Result 4. Let £ and n be given real constants, and let there exist a real number
¢ with ¢ > max{|¢|, ||} so that

(6.12) co‘/o‘mt(t+1)"1a(t)|dtSc—max{[g],lnl}.

Then the ordinary differential equation (6.4) has at least one solution z on the
interval [0, 00) such that (2.5) and (2.6) hold; in addition, this solution z satisfies
(2.12) and

o0 o0

e-e [ rla@lds <o <6+e [ (s+1)7als) ds
0 0
for every t > 0.

(Note that, because of (6.12), [°(s-+1)*|a(s)| ds is finite.)

Moreover, if we apply Theorem 3 and Theorem 4 to the linear ordinary differ-
ential equations (6.5) and (6.6), respectivelly, then we can arrive at the following
two results:

Result 5. Assume that
(6.13) max{fo t(t 4+ 1) [la(t)] + |b(t)]] dt, ]0 (t+1)[|lal(t)] + |b(2)]] dt} < 1.

Let € and n be given real constants, and let there exist a real number ¢ with ¢ >
max{|¢|, |n|} so that

(6.14) c[/ooot(t—f—l) |a(t)dt+/0wtb(t)1dt] < el
and
(6.15) CUD (t+1)|a(t)|dt+/0 |b(t)|dtJ <o [¢].

Then the linear ordinary differential equation (6.5) has exactly one solution = on
the interval [0, c0) satisfying (2.24) and (2.25), and such that (2.5) and (2.6) hold;
in addition, this unique solution x satisfies (2.8) and (2.9).

Result 6. Assume that
o0
(6.16) / £t + 1) Ja(t)| dt < 1.
0

Let £ and 7 be given real constants, and let there exist a real number c with ¢ >
max{||, |n|} so that

(6.17) c-/ooo t(t+1)|a(t)| dt < c— max{|¢|, |n|}.

Then the linear ordinary differential equation (6.6) has exactly one solution = on
the interval [0, o) satisfying (2.28), and such that (2.5) and (2.6) hold; in addition,
this unique solution = satisfies (2.12) and

L cfm(s+ D]a(s)ds < 2'(t) < §+c/m(s+1) la(s)|ds  for every t > 0.
0 0

(Note that, because of (6.17), [7°(s + 1) |a(s)| ds is finite.)
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Note: Provided that at least one of £ and  is nonzero, the assumption (6.17)
implies the hypothesis (6.16).

Now, we will give some examples to demonstrate the applicability of our results.

Example 1. Consider the delay differential equation (6.1) with r =1, a =2
B =1, and

3

8 1
t) = ————— fort> b(t) = ——mm—
o) = iy Prtz0 =g

Take £ = -g— and n = 1. Inequality (6.7) becomes
1 o0 fete]
; 8 / s 8 / 1
t———dt 1t t—————dt < ec—1
¢ UD e ), Vagros¥ te), Bsprmp¥seTh

1
(6.18) §c2+%c5c—1.

We immediately see that (6.18) holds if and only if

fort > 0.

ie.

(6.19) ‘ g <c<6.

Furthermore, Inequality (6.8) is written as

1 oo [o%e]
8 8 1 5
2 - . f 2 ° f A T
¢ UO TICE SV ST -t e s 3E+1p3 =T §

ie.

1 1 5
e ~?+-c<ec— =,
(6.20) 5¢ tgese—¢

We observe that (6.20) is satisfied if and only if
15 — /105 154 /105

6.21 —_ <<
(6.21) g == g
Since
15 — +/105 1
1B B g WAV

both (6.19) and (6.21) are fulfilled if and only if c satisfies (6.19). That is, both
Inequalities (6.7) and (6.8) hold if and only if ¢ is such that (6.19) is satisfied. Thus,
if we choose ¢ = %, then Result 1 leads to the following result:

The delay differential equation

' (t) + m%f)g [z(t — 1) sgnz(t — 1) + mr’(i) =0
has at least one solution x on the interval [0, c0) such that
(6.22) &) = gt +1+40(1) fort— co
and
(6.23) ity = g +o0(1) fort— oo;

in addition, this solution x satisfies )
(6.24) z(t) =z(0) for —1<t<0,
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5 il 5 3
6.25 ~t4+ =< < =i+ = t>
( ) 6+2_${t)_6+2 for every t >0
and
(6.26) % < uiffl = g for every t > 0.

Example 2. Consider the delay differential equation (6.2) with r = 1, o = 2,

and
16

1) = —m—
alt) 35(t 4+ 1)5
Take ¢ = & and n = 1. Inequality (6.9) is written

1 [o%)
. 16 . 18 6
= t—————— P ————dt| < c— =
C[ﬁ 3ar+n¥“+£ B/Er1p =75

2 5 6
e ===y
We immediately see that (6.27) is satisfied if and only if (6.19) holds. That is,
Inequality (6.9) holds true if and only if ¢ satisfies (6.19). Choose ¢ = % Then, by
applying Result 2, we arrive at the next result:

The delay differential equation

for t > 0.

l.e.

(6.27)

" 16 _ 2 . _
z''(t) + BE 1) [2(t—1)]"sgnz(t—1) =0
has at least one solution = on the interval [0, 00) such that
(6.28) F(t)= gt+ 1+0(1) fort—co
and
(6.29) () = g +o(1) for t— oo;
in addition, this solution x satisfies (6.24) and:
6 7 6 13
, —t+ — < x(t) < =t + = >
(6.30) 5t+10ﬁ:c(t)_5t+10 for every t > 0
and
(6.31) - 2l S 2 for every t > 0
: T S5 foreveryt>0.

Example 3. Let us consider the ordinary differential equation (6.3) with o = 2,
B =1, and
2 1
)= ————= fort>0, blt)=-—-—-
olt) = gerap Prtz =357 19
5

Let us take £ = g and 1 = 1. Then, Inequality (6.10) becomes

éjmt - ﬁ+c/mt . dt < 1
o 9(t+1)3 T

fort > 0.
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which leads to (6.18). Also, Inequality (6.11) is written as

CZ/OOu—zr——mdtJrc/‘oo—1——dt<c—§
o 9(t+1)3 5 BEFIE - &
which is equivalent to (6.20). As in Example 1, we see that both (6.18) and (6.20)
are satisfied if and only if (6.19) holds. So, both Inequalities (6.10) and (6.11) hold
if and only if ¢ satisfies (6.19). Thus, by applying Result 3 with ¢ = %, we are led
to the following result:

The ordinary differential equation

P 5 1
[z (t t) + e (t) =

+- TOEYE [z(t)]” sgnz(t) + 3(t+1)3$ (t)=0

has at least one solution x on the interval [0, 00) such that (6.22) and (6.23) hold,;

in addition, this solution x satisfies (6.25) and (6.26).

x.ﬂ'(t)

Example 4. Let us consider the ordinary differential equation (6.4) with o« = 2

and
4

t)=———— fort>0.

o) = ey Ttz
Let us take £ = g and n = 1. In this case, Inequality (6.12) is written as follows

0 o0 4 6

2 et e
c fo BEripdEcT R
which is equivalent to (6.27). But, (6.27) holds if and only if ¢ satisfies (6.19).
That is, Inequality (6.12) is fulfilled if and only if ¢ is such that (6.19) holds. So,
an application of Result 4 with ¢ = % leads to the next result:

The ordinary differential equation

z''(t) + E [z(2))® sgnz(t) = 0

4
15(t + 1
has at least one solution x on the interval [0, c0) such that (6.28) and (6.29) hold;
in addition, this solution x satisfies (6.30) and (6.31).

Example 5. Consider the linear ordinary differential equation (6.5) with

a(t) = b(t) = m Rt il

= 1 . 1
hﬁ (t+1)° ﬁ (t+1)°

g
and hence (6.13) is always satisfied. Now, take £ = 3 and 7 = 1. Inequality (6.14)

becomes
5e 1 20 1
t—-—dt+/ t—————dt| <c—1,
‘{ﬁ 2+ 12T 2@+n4]~c

1
gcgc—l or c=>

We find

ie

Do

Moreover, Inequality (6.15) is written as

= foo—l—dt+/m;dt <c—§
o 2(t+1)3 o 20+1)47) 7 6
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ie
< or = -
12°=°7% =T
Thus, both Inequalities (6.14) and (6.15) are satisfied if and only if ¢ > 2. So, by

applying Result 5 with ¢ = %, we are immediately led to the following result:

The linear ordinary differential equation

.?3”(?:) -+ 5(‘1%'—]'-*)2.’.8('6) + E(%i)—‘lmf(t) =0

has exactly one solution x on the interval [0, c0) satisfying

lz(0)] <

[SeN L]

and
|z'(t)] <

and such that (6.22) and (6.23) hol
(6.25) and (6.26).

for every t > 0,

2. po| W

i in addition, this unique solution x satisfies

Example 6. Consider the linear ordinary differential equation (6.6) with

a(t)

2 fort >0
= —-— T .
5(¢+ 1)4 =

i
R, | R
/0 5(t+1)3 5’

we see that (6.16) is always satisfied. Now, take £ = g and n = 1. Inequality (6.17)
is written as
i 2 6
t————=dt < c— -
Cfo 5+ 1) =CT 5

1

gc <c— 5 or c=>
So, Inequality (6.17) holds true if and only if ¢ > % Hence, an application of Result
6 with ¢ = % gives the next result:

The linear ordinary differential equation
2
")+ o——=x(t) =0
=0+ serpee®

has exactly one solution x on the interval [0, c0) satisfying

Since

ie

ro| Lo

3
lz(t)] < 5(15 +1) foreveryt >0,

and such that (6.28) and (6.29) hold; in addition, this unique solution z satisfies
(6.30) and (6.31).

Finally, we give an example related to our comment at the end of Section 2.

Example 7. Consider the linear ordinary differential equation
e—Bt+1

t+1

(6.32) z''(t) + 21} =0
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This equation is of the form (6.4) with @ = 1 and

e—6t+1
a(t) = for t > 0.
t+1
Take £ = 1—70 and n = %, and choose ¢ = 1. Then, Inequality (6.12) becomes
o0 1 e 1
AL e s B
ejo ¢ tE1p M 310

Thus, (6.12) holds true. Consequently, Result 4 guarantees the following:

The linear ordinery differential equation (6.32) has ot least one solution = on
the interval [0, c) such that
7 9
=—tt— +o(l
z(t) T +10+o() for t — oo
and "
z'(f) = T +o0(1) for t— oo;

i addition, this solution x setisfies

7 4 7
—— - < < —t+1 >
10t+5_z(t)_ 0 +1 foreveryt>0
and . .
e e
o wa O R s e > 0.
10 6_m()_10+6 for every t =0

Now, we observe that Equation (6.32) can also be obtained from (6.3) by taking
o= =1, and
e—6t+1
t) =
i) =377

Again, we take £ = -17—0 and 7 = 19—0, and we choose ¢ = 1. Then, Inequality (6.11) is
written

fort >0, b(t)=0 fort>0.

e 3 e 3
—6t ¥
dt < — e =< —.
6/08 =175¢ "™ 5510
So, (6.11) fails to hold. Thus, Result 3 is not applicable. Consequently, the above
result for the linear ordinary differential equation (6.32) cannot be obtained from
Result 3.

7. SOME SUPPLEMENTARY RESULTS

The results of this section are formulated as two theorems (Theorems I and
IT) and two corollaries (Corollaries I and II). Corollaries I and II are immediate
consequences of Theorems I and II, respectively. Theorem I and Corollary I concern
the delay differential equation (E), while Theorem II and Corollary II are dealing
with the delay differential equation (Eg). It must be noted that Theorem I and
Corollary I can be applied, in particular, to the delay differential equation (E')
and, especially, to the ordinary differential equation (D); analogously, Theorem
IT and Corollary II are applicable to the particular case of the delay differential
equation (Ej) as well as to the special case of the ordinary differential equation
(Dg). These applications are left to the reader.
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Theorem I. Assume that (2.1) holds, where F is a nonnegative real-valued
function defined on [0, c00)xC ([—r,0],[0,00))%[0, o0), which satisfies the Continuity
Condition (C). Suppose that (B) is satisfied.

Let c be a given positive real number such that (3.1) holds, where the function
in C([—r,00),[0,00)) depends on ¢ and is defined by (2.4). Then every solution z
on the interval [0,00) of the delay differential equation (E) with

7.l ! £
@y mae{_mzx ()], supla/)] | <

satisfies (2.5) and (2.6), where the real constants & and 1 depend on the solution T
and are defined as follows:

(7.2) E=2'(0) — /OOO Flt oo, (1))t
and .
(7.3) n = xz(0) —F—/D tf(t, e, 2/ (8))dt.

Corollary I. Assume that (2.1) holds, where F is a nonnegative real-valued
function defined on [0, 00)xC ([—r, 0], [0, 00))x[0, 00), which satisfies the Continuity
Condition (C). Suppose that (B) is satisfied.

Assume that, for any positive real number ¢, (3.1) holds, where the function
in C ([-r,00),[0,c0)) depends on ¢ and is defined by (2.4). Then every solution
on the interval [0,00) of the delay differential equation (E) with bounded derivative
on [0,00) satisfies (2.5) and (2.6), where the real constants & and 1 depend on the
solution = and are defined by (7.2) and (7.3), respectively.

Theorem II. Assume that (2.10) holds, where Fy is a nonnegative real-valued
function defined on [0,c0) x C' ([—r, 0], [0,00)), which satisfies the Continuity Con-
dition (Cp). Suppose that (Bg) is satisfied.

Let ¢ be a given positive real number such that (4.1) holds, where the function
in C([-r,00),[0,00)) depends on ¢ and is defined by (2.4). Then every solution x
on the interval [0,00) of the delay differential equation (Eq) with

|z(2)]

: —_— <
(7.9 e {_m (6], w2} <.
satisfies (2.5) and (2.6), where the real constants & and 1 depend on the solution x
and are defined as follows:

(7.5) ¢=20)- [ ” folt, zo)dt
and
(7.6) = i) +fﬂ b lhanat

Corollary II. Assume that (2.10) holds, where Fy is a nonnegative real-valued
function defined on [0, 00) x C ([—r,0], [0,00)), which satisfies the Continuity Con-
dition (Co). Suppose that (Bg) is satisfied. '
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Assume that, for any positive real number c, (4.1) holds, where the function
in C ([—r,00),[0,00)) depends on c and is defined by (2.4). Then every solution x
on the interval [0, 00) of the delay differential equation (Eqo) with xz(t) = O(t) for
t — co satisfies (2.5) and (2.6), where the real constants & and 71 depend on the
solution = and are defined by (7.5) and (7.6), respectively.

Proof of Theorem 1. Let x be a solution on the interval [0,00) of the delay
differential equation (E) such that (7.1) is satisfied. It follows from (7.1) that z
satisfies (3.4) and (3.5). As in the proof of Proposition 1, we can arrive at (3.11),
which guarantees that (7.2) and (7.3) define two real constants £ and n, respectively,

depending on the solution z.
Now, from (E) it follows that

(7.7) z(t) = z(0) + tz'(0) — ft(t —8)f(s,zs,2'(s))ds for t > 0.
0

For every t > 0, we obtain

_ /t(t — 8)f(s, 25, '(s))ds
0

_ /t(t —8)d UDO f(a,:ng,:c’(cr))dcr]
—t/ i i) fU f(0,20,2 ))da]ds
—t/ Flot, Byt () da+f U o, & ))da]
*ft U f(cr,:ca,m’(a))dcr]ds

= —t fom f(8,z5,2'(8))ds + /000 sf(s,zs,2'(s))ds — /;00(3 —t)f(s,zs, ' (5))ds.

Thus, (7.7) gives
z(t) = z(0)+¢z'(0) —tfo fla,@e, @ (s))ds+/0 sf(s,zs,2'(5))ds
—/: (s —t)f(s,zs,7'(s))ds
= [a:’(()) - fom f(s, ws,x’(s))dsJ t+ [a:(U) + fom sf(s,zs,2'(s))ds
—ft (s —t)f(5,2s,2'(8))ds.

Hence, in view of (7.2) and (7.3), we have

Il

I

(7.8) z(t) =& +n— /;00(3 — )} f(s,zs,2'(s))ds fort > 0.

But, (3.11) ensures that

313& /w(s —t)f(s,zs,2'(5))ds = 0.
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So, it follows from (7.8) that the solution z satisfies (2.5). Furthermore, from (7.8)
we obtain

(7.9) 2t =f +/ f(s,z5,2'(s))ds for t > 0.
i
But, because of (3.11), it holds

oo
lim f f(s,zs,2'(8))ds = 0.
t—foo t
Thus, (7.9) implies that = satisfies (2.6).

The proof of the theorem has been completed.

Proof of Theorem II. Let x be a solution on the interval [0, oc) of the delay
differential equation (Eg), which satisfies (7.4). We immediately observe that (7.4)
guarantees that the solution z is such that (3.4) and (3.6) hold. As in the proof
of Proposition 2, we can conclude that (4.7) holds true and hence (7.5) and (7.6)
define two real constants & and 7, respectively, which depend on the solution z.

The rest of the proof of the theorem is similar with the corresponding part of
the proof of Theorem I, and will be omitted.

Before closing this section and ending the paper, we note that the problem of
giving sufficient conditions for every solution to be asymptotic at co to a line (de-
pending on the solution) has recently been investigated in [10], for second order
nonlinear ordinary differential equations. For the more general case of n-th order
(n > 1) nonlinear ordinary differential equations, conditions have been established
in [17,18], which guarantee that every solution is asymptotic at oo to a real poly-
nomial of degree at most n — 1 (depending on the solution).
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